HBO in Hematopoietic Stem Cell Transplantation: Lessons Learned

Omar Aljitawi, MD
Hematology/Oncology
Hematology and Transplantation (HAT) Laboratory
Pathology and Laboratory Medicine
University of Kansas Medical Center
Bioengineering, University of Kansas
"The problem we are trying to fix"

Clinical HSC transplantation

HSC infusion

Conditioning → Neutropenia → Engraftment

Biologically

HSC BM homing

Prolonged/ delayed in UCB
Impaired in UCB

(Abbreviation: UCB: Umbilical cord blood transplantation; HSC: Hematopoietic stem cells; BM: Bone marrow.)
Hematopoietic stem cell (HSC) homing to bone marrow

Homing is transient; hours to less than 72 hours

SDF-1

CD-34/CXCR4 + Stem cell
HSC homing and erythropoietin (EPO)

Hypothesis: EPO might play a role in HSC homing

Question: How do we lower blood EPO level?

The answer: HBO
Hyperbaric oxygen (HBO)

• Involves inhalation of 100% oxygen intermittently under a pressure greater than 1 atmospheric pressure (ATM)

• Results in:
 a. Mechanical effects related to increased pressure.
 b. Physiologic effects related to hyperoxia.

HBO lowers EPO in healthy volunteers

HBO effects on EPO and UCB CD34+ cell homing/engraftment in a transplant murine model

HBO reduces blood EPO levels at time of HSC infusion → HBO improves early bone marrow homing of HSC → HBO improves HSC bone marrow engraftment

Aljitawi et al, Unpublished data

Aljitawi et al, BCMD (2013)
From bench to bedside
Hyperbaric oxygen (2.5 atmosphere absolutes and 100% oxygen for 2 hours) is given 6 hours prior to stem cell infusion.
Correlative studies: EPO

Myeloablative

Reduced intensity

*Lowest EPO level 8-hours from the start of HBO
*EPO rebound noticed 24 hours later

Aljitawi et al, ASH 2014
Blood Count Recovery and Engraftment

<table>
<thead>
<tr>
<th></th>
<th>HBO (n=8)</th>
<th>Historic (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median time to neutrophil recovery</td>
<td>15 (6-25)</td>
<td>18 (5-41)</td>
</tr>
<tr>
<td>(Days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median time to platelet recovery</td>
<td>33 (30-84)</td>
<td>38(0-161)</td>
</tr>
<tr>
<td>(Days)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aljitiawi et al, ASH 2014
Would this concept apply to other types of hematopoietic stem cell transplantation?

Autologous peripheral blood stem cell transplantation
Goals

- To determine the safety of HBO in autologous stem cell transplantation.
- To determine HBO efficacy in reducing time to neutrophil and platelet recovery.
Tolerability

• 20 patients treated to date.
• Only one patient was unable to complete the planned therapy.
• No treatment limiting toxicity was observed.
Comparison to historic data:

Neutrophil Recovery

N=12

*Neutrophil recovery was shorter in HBO by an average of 0.3 days.

Aljitawi et al, ASBMT 2015
Comparison to historic data:

Platelet Recovery

N=12

*Platelet recovery shorter in the HBO by an average of 3 days.

Aljitawi et al, ASBMT 2015
Summary

• HBO in HSC transplantation:
 1. Well-tolerated.
 2. Might improve time to neutrophil and platelet count recovery.

• Phase II studies are planned to further investigate HBO effects on HSC engraftment.
Lessons learned

• EPO reduction is followed by EPO rebound.
• Future laboratory studies will focus on:
 a. Timing of HBO
 b. Frequency of HBO
 Can we lower EPO throughout the period of HSC homing?
 Would this lead to further improvement in engraftment?
Concluding Remarks

• New concept: EPO targeting in HSC transplantation.
• Novel approach to improving HSC engraftment: HBO modulates the host microenvironment
• Stay tuned!

We just scratched the tip of the iceberg!
Thanks

Mentorship/Support/Collaboration:

Preclinical:
Hal Broxmeyer, PhD
Linheng Li, PhD
Buddhadeb Dawn, MD
Jeff Radel, PhD
Bruce Kimler, PhD
George Vielhauer, PhD
Tara Lin, MD
Soumen Paul, PhD
Thomas Yankee, PhD
Mary Markiewicz, PhD

Clinical:
Joseph McGuirk, DO
Tara Lin, MD
Sunil Abhyankar, MD
Sid Ganguly, MD
Dennis Allin, PhD
Chris Lominska, MD
Anurag Singh, MD
Leyla Shune, MD
Mary Laughlin, MD
Peter Van Veldhuizen, MD

Technical Help:
Nikhil Parelkar
Megan Swink
Yinghua Xiao

Patients

HAT Lab:
Tara Lin, MD
Amanda Wise (Lab manager)
Dandan Li, Pathology PhD student

Cancer Center Clinical Trial Research Office

Robert K. Dempski Cord Blood Research Fund

Funding support:
- Office of Scholarly, Academic and Research Mentoring (OSARM)
- Frontiers Pilot and Collaborative Studies Funding Program
- Robert K. Dempski Cord Blood Research Fund
- SWOG/Hope Foundation
Plenary I
Translational Medicine

April 30, 2015